Proof of Proposition 3

نویسنده

  • Noam Shomron
چکیده

Let g be a simple, finite-dimensional Lie superalgebra over C. These have been classified by V. Kac. Unless g is a Lie algebra or a Lie superalgebra of type osp(1, 2n), the category of finite-dimensional representations of g is not semisimple; q.v. [6]. This leads to a classification problem. For example, in [3], the representation theory of sl(m,n) is worked out by showing it is wild when m,n ≥ 2, and by giving an explicit description of the indecomposable finite-dimensional representations of sl(1, n). We show that the category of finite-dimensional representations of g is wild (i.e., as hard as classifying pairs of matrices) when g is of type W (0, n) with n ≥ 3. This is done by explicitly exhibiting enough extensions between simple modules. Secondly, we find the decomposition of the category of finite-dimensional representations into blocks. As an application, using an idea of Maria Gorelik, we prove that the centre of the universal enveloping algebra of g is trivial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supplement to “bayesian Large-scale Multiple Regression with Summary Statistics from Genome-wide Association Studies”

A Theoretical derivation of RSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 A.1 Proofs of propositions in main text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 A.1.1 Proof of Proposition 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 A.1.2 Proof of Proposition 2.2 . . . . . . . . . . . . . . ....

متن کامل

Correction to "Queue-proportional rate allocation with per-link information in multihop wireless networks"

Prof. Jim Dai has pointed out to us that the Lyapunov function in Proposition 3 in the paper “Queue-Proportional Rate Allocation with Per-Link Information in Multihop Wireless Networks ”[3] is not Lipschitz continuous and hence the proof of Proposition 3 does not hold. In this note, we provide an alternative proof for multihop networks where each route has at most two links. The proof in the ge...

متن کامل

Erratum to "An adaptive controller for nonlinear teleoperators" [Automatica 46 (2010) 155-159]

The last part of the proof of Proposition 3 in Nuño, Ortega and Basañez (2010) assumes that, if a function f : R≥0 → Rn verifies f, ḟ, f̈ ∈ L∞ and |ḟ| → 0, then f → constant. Such an implication is not correct, as may be easily verified with the scalar function f (t) = sin(ln(t + 1)), which satisfies all the assumptions but does not have a limit. In this communication a corrected proof of Propos...

متن کامل

A General Equilibrium Model of Statistical Disrcimination - Omitted Appendices

B Omitted Proofs 2 B.1 How to make individual and aggregate distributions coincide . . . . . . . . . . . . . 2 B.2 Proof of Lemma 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 B.3 Proof of Lemma A1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 B.4 Proof of Lemma A2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Kepler ’ s Area Law in the Principia : Filling in some details in Newton ’ s proof of Prop . 1 .

During the past 25 years there has been a controversy regarding the adequacy of Newton’s proof of Prop. 1 in Book 1 of the Principia. This proposition is of central importance because its proof of Kepler’s area law allowed Newton to introduce a geometric measure for time to solve problems in orbital dynamics in the Principia. It is shown here that the critics of Prop. 1 have misunderstood Newto...

متن کامل

Small Semisimple Subalgebras of Semisimple Lie Algebras

The goal of Section 2 is to provide a proof of Theorem 2.0.1. Section 3 introduces the necessary facts about Lie algebras and representation theory, with the goal being the proof of Proposition 3.5.7 (ultimately as an application of Theorem 2.0.1), and Proposition 3.3.1. In Section 4 we prove the main theorem, using Propositions 3.3.1 and 3.5.7. In Section 5, we apply the theorem to the special...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008